Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures
نویسندگان
چکیده
The modeling of finite-extent semiconductor nanostructures that are embedded in a host material requires a proper boundary treatment for a finite simulation domain. For the study of a self-assembled InAs dot embedded in GaAs, three kinds of boundary conditions are examined within the empirical tight-binding model: ~i! the periodic boundary condition, ~ii! raising the orbital energies of surface atoms, and ~iii! raising the energies of dangling bonds at the surface. The periodic boundary condition requires a smooth boundary and consequently a larger GaAs buffer than the two nonperiodic boundary conditions. Between the nonperiodic conditions, the dangling-bond energy shift is more numerically efficient than the orbital-energy shift, in terms of the elimination of nonphysical surface states in the energy region of interest for interior states. A dangling-bond energy shift larger than 5 eV efficiently eliminates all of the surface states and leads to interior states that are highly insensitive to the choice of the energy shift.
منابع مشابه
Electron energy level calculations for semiconductor nanostructures
Although self-assembled quantum dots are grown on wetting layers, most simulations exclude the wetting layer. The neglected effects on the electronic structure of a pyramidal InAs quantum dot embedded in a GaAs matrix are investigated based on the effective one electronic band Hamiltonian, the energy and position dependent electron effective mass approximation, and a finite height hard-wall 3D ...
متن کاملA Theoretical Investigation for Electronics Structure of Mg(Bio2)2 Semiconductor Using First Principle Approach
The Mg(BiO2)2 is the orthorhombic crystal system acting as semiconductor in electric devices. To evaluate electronic band structures, the total density of state (TDOS) and the partial density of state (PDOS), Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE0) was used for Mg(BiO2)2. The band gap was recorded at 0.959 eV, which is supported by a good semiconducto...
متن کاملشبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست
In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...
متن کاملDesign of Photonic Crystal Polarization Splitter on InP Substrate
In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...
متن کاملThe influence of S-embedded subgroups on the structure of finite groups
Let H be a subgroup of a group G. H is said to be S-embedded in G if G has a normal T such that HT is an S-permutable subgroup of G and H ∩ T ≤ H sG, where H denotes the subgroup generated by all those subgroups of H which are S-permutable in G. In this paper, we investigate the influence of minimal S-embedded subgroups on the structure of finite groups. We determine the structure the finite grou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004